

Assessing Glycolipid Surfactant-Enriched Diets on Growth, Immunity and Enzymatic Activity in *Catla catla* (Hamilton, 1822)

Sahoo Sameer Ranjan¹, Jena Arabinda², Prusty Shakti Ketan³ and Pradhan Arun Kumar^{1*}

1. Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, INDIA

2. UNDP, Directorate of Fisheries, Cuttack, Odisha, 753007, INDIA

3. Faculty of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, INDIA

*arunpradhan@soa.ac.in

Abstract

Rhamnolipid, a bioactive compound derived from *Pseudomonas* sp. Kmka-114, aimed to assess the effects on growth, non-specific immunity and enzymatic profiles in juvenile *Catla catla* through graded dietary supplementation. Juvenile *catla* were randomly selected for thorough evaluations of blood, serum and liver tissues to determine the influence on growth metrics, non-specific immune responses, enzymatic activity and organ modulation. Throughout the feeding trial, there was a significant increase in the activities of myeloperoxidase, lactose dehydrogenase and alkaline phosphatase activity in 300 mg kg^{-1} biomass day $^{-1}$ (6X).

*Histopathological analysis of liver tissues at this concentration demonstrated no hepatic cell damage, indicating the surfactant's safety for the fish. Following a withdrawal period, *Catla catla* displayed a stable assay result, highlighting the necessity for further detailed studies to clarify the underlying mechanisms.*

Keywords: *Catla catla*, Rhamnolipid, Non-specific immunity, Histology, Mangrove.

Introduction

Catla catla (Hamilton, 1822), the fastest growing Indian major carp cultured throughout the Indian sub-continent¹⁵. Interspecies interaction makes it easy for cultivating as a polyculture mode along with species like mrigala *Cirrhinus mrigala* and rohu *Labeo rohita*¹⁶. It holds a central role as preferable carp due to its rapid growth, consumer preference and high market value. The expansion of catla farming has been facilitated by advancements in hatchery technologies and the large-scale production of captive catla seed. However, the transition towards more intensive aquaculture practices has led to a rise in disease outbreaks in culture ponds, posing a significant challenge to sustainable freshwater aquaculture and contributing to considerable economic losses.

In the light of increasing concerns regarding the use of antibiotics in aquaculture, particularly the emergence of antibiotic-resistant bacteria, there is a heightened interest in alternative disease control strategies. The prohibition of antibiotics in several countries, alongside concerns over

environmental contamination and food safety, has driven the search for substitutes that can sustain optimal productivity in aquaculture systems³². There is a constant search for immunostimulants compounds which can increase resistance to infectious diseases by enhancing both specific and non-specific defence mechanisms.

This has led to growing attention towards biosurfactants (BS), a class of surface-active compounds naturally produced by microorganisms. Microbial surfactants, are gaining attention for their wide range of applications, in pharmaceutical and cosmetic products for their antimicrobial, antiviral properties, gene transfection, immunomodulation and cancer therapy³⁷. These compounds contain both hydrophilic and hydrophobic moiety¹. They are preferred due to their bio-degradable and environmental nature. They are bio-compatible, possessing great stability in extreme condition such as temperature, pH and salinity⁸. Biosurfactants, inherently superior to chemically synthesized surfactants, are characterized by lower toxicity, biodegradability and greater environmental compatibility across various ecosystems³⁶.

The global market for surface-active agents is experiencing steady growth, with an annual increase of 6.75% and is projected to reach \$3.21 billion by 2025³. The use of bio-surfactant is restricted due to its non-economical production. This can be commercialized by testing various cheap substrates for higher yield. Deshpande and Daniels¹² have pioneered in using animal fat waste for sophorolipid production from *Candida bambicola*.

Recent studies examined advances in understanding fish immune responses to bacterial stress which can significantly influence immune function. This innate immunity being the fundamental defence mechanism is offering protection against sudden exposure to environmental pathogens²⁶. Compounds averting in compromise with this parameter can reveal mechanism of host interaction dealing with pathogens. The generated information holds the potentiality to act as a precautionary in preventing or dealing outbreak.

Although microbial surfactants have garnered increasing attention, the effects of a specific biosurfactant (rhamnolipid) on immunity and key enzymatic activities are undivulged. Keeping the above in view, the present study has been undertaken to understand to address this knowledge gap.

The experiment was focused on *Catla catla*, one of the major Indian carp. The study was conducted under optimal conditions, administering varying doses of rhamnolipid (50, 150 and 300 mg/kg) followed by a 10-day withdrawal period. Given the importance of catla cultivation and its vulnerability to ectoparasite infestations during grow-out culture, a systematic evaluation was performed. The impact of rhamnolipid was assessed on immune responses, enzyme activities and liver tissue following feed supplementation.

Material and Methods

Extraction of rhamnolipid: *Pseudomonas aeruginosa* Kmka-114 was isolated from the Karnataka Mangrove regions of India. In the mid-exponential phase, it was inoculated in 500 ml of sterile mineral salts medium and 3% (w/v) glycerol to start the synthesis of rhamnolipids. The flask was incubated at 30°C with continuous shaking at 200 rpm for a duration of 9 days. The mineral salts medium used comprised of 3.0 g KH₂PO₄, 7.0 g K₂HPO₄, 0.2 g MgSO₄•7H₂O and 1 g (NH₄)₂SO₄ per liter, resulting in a C/N ratio of 55:1, as per the formulation by Santa Anna et al.³⁹. The pH of the medium was adjusted to 7.0. At the end of incubation, the culture broths were centrifuged at 12,500 ×g for 30 minutes. After that, 6 M HCl was used to acidify the resultant supernatant to pH 3 and it was kept overnight at 4°C.

Centrifugation at 15,000 × g for 30 minutes at 4°C precipitated the surfactant, which was then dissolved in ethyl acetate. This mixture was washed once with pH 3 acidified water, dried with anhydrous sodium sulphate and then evaporated under vacuum. Following three ethyl acetate washes, the resultant oily residue was dissolved in 0.05 M sodium bicarbonate. After adding 6 M HCl to the aqueous solution to make it more acidic, rhamnolipids were extracted using ethyl acetate and then dried. Following acidification and an overnight incubation at 4°C, ethyl acetate was used to directly extract the supernatant four times. After being dried with anhydrous sodium sulphate, the mixed organic components were evaporated. After being dissolved in 0.05 M bicarbonate, the residue was filtered, acidified to pH 2 and kept at 4°C for the whole night. Finally, centrifugation (20,000 × g, 4°C) was used to collect the precipitate.

Experimental Condition: A total of 150 healthy catla (*Catla catla*) fingerlings, devoid of any observable disease symptoms as determined through meticulous gross examination of skin, fins and gills, were procured from the Parlakhamundi fish farm in Gajam, Odisha, India. A 500 L biofloc tanks with continuous aeration assistance were used to acclimatise the fingerlings to freshwater conditions for two weeks. The water temperature in the tanks was kept at a consistent 28 ± 0.5°C. During the acclimatization phase, a daily water exchange of 30% was executed and the fishes were provided with a basal diet constituting 3% of their average body weight (ABW). Each tank, including the control group, was stocked with thirty fishes having an average weight of 17 ± 26 g.

The surfactant-infused feeding trial spanned 30 days and involved three experimental groups receiving different doses: 50 mg kg⁻¹ biomass day⁻¹ (BS1) (1x concentration), 150 mg kg⁻¹ biomass day⁻¹ (BS2) (3x concentration) and 300 mg kg⁻¹ biomass day⁻¹ (BS3) (6x concentration). Water quality parameters were closely monitored and kept within ideal values during the trial, following APHA⁵ recommendations and regular operating procedures. Feeding of the experimental fish occurred twice daily at 8:00 hr and 17:00 hr. The surfactant-infused diet was administered for the entire 30-day trial period according to the prescribed graded levels, followed by a subsequent 10-day withdrawal period during which only basal feed was provided. This experimental design aims to comprehensively investigate the impact of surfactant infusion on the health and performance of catla fingerlings, providing valuable insights into its potential effects and withdrawal dynamics.

Diet preparation: In the feed laboratory, raw materials were meticulously prepared using locally sourced feed ingredients. Carboxymethyl cellulose (CMC), which acts as a binder, was pre-blended with a mineral and vitamin mixture that was obtained from fish farms. The dry ingredients, excluding the vitamin and mineral mixtures, underwent sieving through a 60-mesh sieve, followed by precise weighing and mixing in accurate proportions. The addition of distilled water facilitated the attainment of a homogeneous mixture while maintaining the crude protein level at approximately 30%.

Table 1
Composition of experimental and control feed.

Composition of medicated feed and control feed (mg kg ⁻¹).				
Feed ingredients	Control	BS1 (mg/kg of fish biomass per day)	BS2 (mg/kg of fish biomass per day)	BS3 (mg/kg of fish biomass per day)
Fish meal	50	50	50	50
Soya meal	280	280	280	280
GNOC	260	260	260	260
Rice bran	200	200	200	200
Corn flour	150	150	150	150
Oil mix(ml)	40	40	40	40
Vitamin and mineral mixture	20	19.95	19.85	19.7
Biosurfactant (BS)	0	0.05	0.15	0.3

Subsequently, the dough was autoclaved, cooled to room temperature and then infused with the vitamin-mineral mixture and biosurfactant.

The vitamin and mineral mixture, obtained from fish farms, played a crucial role in fortifying the nutritional content of the feed. The final dough underwent a pressing process using a hand pelletizer to produce uniform-sized pellets with a diameter of 2 mm. The pellets underwent a 48-hour drying process in a hot air oven maintained at around 30°C. After drying, they were carefully sealed in airtight bags and kept for later use at 4°C, as outlined in table 1.

Sampling of Experimental Fish: On predetermined days (10, 20, 30 and 40) of the study, a systematic sampling strategy was used to evaluate the growth of fish. On each sampling day, five fish were chosen at random from each tank and their weights were recorded. Prior to blood collection, the fish were anaesthetized using 50 µl liter⁻¹ of water-soluble clove oil to ensure human handling. Using a 2.0 ml hypodermal syringe, blood was extracted from the caudal vein. Blood samples ranging from 500 to 600 µl were taken and split into two distinct vials right away. EDTA, an anticoagulant, was present in a thin coating in one vial but not in the other.

Anticoagulant-filled vials were gently shaken to avoid clotting. By incubating the vials for about an hour and then centrifuging them at 3000 g for 15 minutes at 4°C, serum separation was accomplished. After using a micropipette to properly extract the resultant serum, it was kept at -20°C for further examination. This meticulous blood sampling and processing methodology ensures the preservation of blood components for subsequent assessments, contributing to the reliability of the growth-related data in the study.

Growth performance: At the beginning and at the end of the trial, body weight was measured for the fish after 1d of feed deprivation. The consumption of diet was recorded. The initial body weight (IBW), final body weight (FBW), weight gain ratio (WGR), specific growth rate (SGR) feed conversion ratio (FCR), daily feed intake (DFI) and survival rate (SR) (Table 2) were calculated as follows:

$$SR(\%) = 100 \times \frac{\text{final number of fish}}{\text{initial number of fish}}$$

$$SGR(\%) = 100 \times \frac{(\ln(\text{final weight}) - \ln(\text{Initial weight}))}{\text{time period}}$$

$$FCR (\%) = \frac{\text{final weight} - \text{initial weight}}{\text{Feed intake}}$$

$$WGR (\%) = 100 \times \frac{[\text{Final wet weight (g)} - \text{Initial wet weight (g)}]}{\text{Initial wet weight (d)}}$$

$$DFI (\text{g/d}) = \frac{\text{Feed consumption per fish (g)}}{\text{trial period (d)}}$$

$$FCR = \frac{\text{Feed intake (g)}}{\text{weight gain (g)}}$$

Assessment of Non-Specific immune parameters: Numerous antibacterial substances, including proteins and enzymes including lysozyme proteolytic enzymes, complement proteins immunoglobulins, lectins and C-reactive proteins, are present in fish blood. In this study, the analysis of non-specific immune parameters including serum lysozyme, myeloperoxidase (MPO), nitroblue tetrazolium (NBT) assay, serum glucose, albumin and total protein was done.

Myeloperoxidase (MPO) Activity: MPO evaluation was conducted using Quade and Roth's approach³⁴. 15 µl of fish serum was combined with 135 µl of Hank's balanced salt solution (devoid of Mg²⁺ and Ca²⁺) and was added to microtiter plate wells. 50 µl freshly 20 mM 3,3',5,5'-tetramethyl benzidine were added. After incubating for two minutes at room temperature, 4 M sulfuric acid was added to halt it. Utilising a UV-VIS Spectrophotometer, the optical density at 450 nm was determined.

Respiratory Burst (RBT) Activity: The assay was determined as per Anderson and Siwicki². 100 µl of heparinized blood was mixed with 0.2% NBT (nitroblue tetrazolium) solution of 100 µl and incubated for 30 minutes at 25°C. The NBT solution was prepared using 1x PBS (Phosphate buffer saline). After the reaction time, 50 µl of the suspension was taken out, mixed with 1 ml dimethyl formamide solution (Sigma-Aldrich) to solubilize formazan product. The tube was centrifuged at 6000 x g for 10 min and the reduction of NBT by intracellular superoxide radicals was determined. The supernatant OD was measured using a UV-VIS Spectrophotometer at 540 nm.

Table 2
Survival and growth performance and feed utilization of *Catla catla*

Parameters	0-40 days experiment			
	Control	BS1	BS2	BS3
IBW(g)	17.14 ± 0.25	17.48 ± 0.192	17.09 ± 0.25	17.3 ± 0.175
FBW (g)	41.42 ± 0.25	42.98 ± 0.36	43.46 ± 0.28	45.64 ± 0.25
WG (%)	99.76 ± 0.47	98.47 ± 0.70	114.69 ± 0.53	126.12 ± 0.90
SGR %	1.72 ± 0.096	1.71 ± 0.0376	1.90 ± 0.0717	2.03 ± 0.0930
DFT	1.22 ± 0.0611	1.25 ± 0.06716	1.26 ± 0.079	1.30 ± 0.076
FCR	2.02 ± 0.002	1.97 ± 0.022	1.92 ± 0.0344	1.84 ± 0.068
SR (%)	100.00000	100.00000	100.00000	100.00000

Lysozyme Assay: It is a turbidometric assay carried out following Sankaran and Gurnani³⁸ with modification. 130 μ l of newly prepared *Micrococcus lysodeikticus* (Sigma-Aldrich, USA) solution was mixed with 25 μ l of fish serum. The bacterial suspension was made in 0.02M sodium acetate buffer with a concentration of 0.2 mg/ml. After adding the bacterial solution, the optical density was measured at 450 nm at 24°C both right away and an hour later. A standard curve was prepared using lysozyme from chicken egg-white (Himedia MB098). The lysozyme activity was calculated and represented as μ g/ml based on the reduction in absorbance.

Biochemical Parameters - Blood Glucose, Total Protein, Albumin: Commercial kits from Coral Clinical Systems in India were used to measure the amounts of albumin, total protein and blood glucose. For blood glucose estimation, the Trinder method was used in conjunction with the glucose oxidase measurement⁴⁷. Bradford⁹ method was followed to generate a standard curve using a known concentration of bovine serum albumin (BSA) (Himedia MB083) to measure the serum protein. Doumas techniques with BCG (bromocresol green) dye were used to quantify the contents serum albumin¹⁴. The resultant values were used to calculate globulin levels by subtracting albumin content from total protein.

Estimation of Enzyme Activity

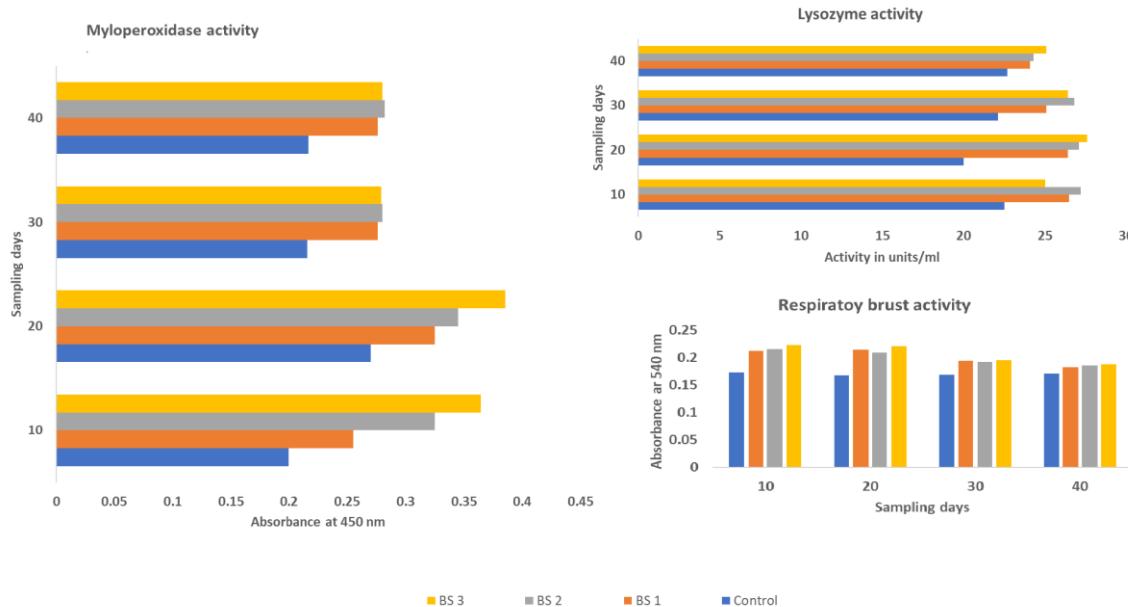
- a. **Alkaline Phosphatase Activity Assay:** The alkaline phosphatase activity (ALP) in fish serum was determined in compliance with the manufacturer's instructions using a ready-to-use kit (Bio Vision, USA). To see the yellow colour shift (λ max = 405 nm) brought on by alkaline phosphatase dephosphorylation, p-nitrophenyl phosphate (pNPP) was employed as the phosphatase substrate²⁸.
- b. **Lactate Dehydrogenase Activity Assay:** Lactate dehydrogenase (LDH) activities in fish serum were determined using a ready-to-use kit (Sigma-Aldrich, USA) in compliance with the provided instructions.
- c. **Tissue Preparations:** At the conclusion of the experiment, fish from all groups were sacrificed and liver tissues from the control and highest biosurfactant-infused treated group were processed for histopathological examination. Sections fixed in paraffin were stained with hematoxylin-eosin and examined under a light microscope to record and examine histological alterations⁷.

Statistical Analysis: All the data displayed were representation as the arithmetic mean \pm standard error (SE) after undergoing a one-way analysis of variance (ANOVA) in SPSS (23.0 version, USA). Significance was considered at $p < 0.05$. This comprehensive and rigorous approach to data collection and analysis ensures the reliability and validity of the findings in elucidating the impact of biosurfactant infusion on various physiological and immune parameters in fish.

Results

Water quality parameters were systematically assessed every alternate day, maintaining optimal conditions across all tanks throughout the entire experimental period. Specifically, pH was sustained at 7.0 ± 0.4 , dissolved oxygen at 5 ± 0.83 ppm, total alkalinity at 103 ± 2 ppm, total hardness at 94 ± 1 ppm, ammonia at 1.6 ± 0.09 ppm, nitrite at 0.03 ± 0.003 ppm, nitrate at 0.3 ± 0.06 ppm and water temperature at $28 \pm 0.5^\circ\text{C}$. Growth analysis revealed slightly higher differences between the experimental and control fish groups ($p > 0.5$) (Table 2). Presentation of non-specific immune parameters is depicted in figure 1.

Notably, myeloperoxidase, respiratory burst and lysozyme activities exhibited significant variations ($p < 0.05$) in treated fish compared to the control. However, the parameters level returned to similar in all treated group with a minor difference to the control on the 40th day. The respiratory activity of all the treated groups till 20th day of the experiment was significantly higher compared to the control. The concentration group exhibited a decrease until after 20th day ($p < 0.05$) and remained nearly same even after withdrawal. Myeloperoxidase activity significantly varied across all groups until the 20th day of the feeding trial. In the post-feed infusion stages, all groups were nearly identical but elevated compared to the control. At the withdraw stages i.e. 40th day, a stability in data was observed with less to no drastic changes observed across all experimental groups compared to the control.


The data developed from the study showed serum biochemical parameters of catla fed with different level of surfactin shown in table 3. Serum albumin levels of BS1 and BS2 treated groups were observed higher compared to the BS1 which is nearly equal to the control group. Protein level at the compound withdrawal stage seems to have no relevant difference among each group. A significant drop in glucose level was observed in 3x and 6x group.

During the course of the feeding study, compared to the control group, the activities of the ALT and LDA of surfactin supplement groups were significantly different ($p < .05$). The treated BS3 group fish showed major elevation in serum enzymatic parameters. Lactate dehydrogenase activity of BS3 remained elevated and similar throughout the study. BS2 group levels were high compared to the BS1 and control. BS1 group came back to equal level with control on compound withdrawal. A difference in alkaline phosphatase activity was observed in BS 2 and BS3. Both the group activity came crashing to a comparable range on withdrawal (Fig. 2). Moreover, it was discovered that upon withdrawal, the BS2, BS3 treatment group fishes mean LDH and AKP values were higher to control.

Histological observation: Fish liver slices from the control and BS3 groups are displayed histologically in fig. 2. The BS3 was selected due to the elevated parameters compared to others. In control group, the hepatocytes are found normal

with intact architecture. The hepatic sinusoids were abundantly present. In BS3 group, normal hepatocytes were observed with absence of vacuoles. But no haemorrhage, congestion and cellular hypertrophy was observed in the

treated group tissue. A few nuclear pyknosis were observed in both the groups which can be considered a natural tendency occurring during the maturation of RBCs and WBCs.

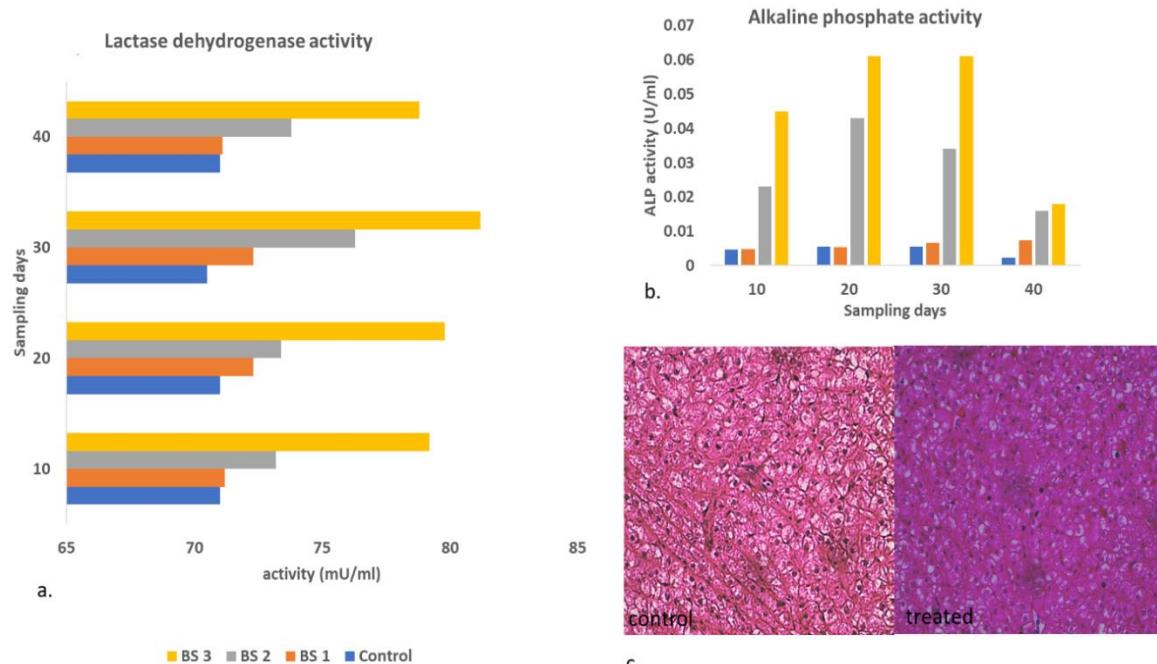


Figure 1: *Catla catla* Myeloperoxidase activity, Lysozyme activity and Respiratory burst activity

Table 3

Effect of surfactant on total serum protein, albumin, globulin and glucose in *C. catla* fingerlings.

40 days experiment				
	Serum protein (g/dl)	Serum albumin (g/dl)	Globulin (g/dl)	Serum glucose (mg/dl)
Control	2.50 ± 0.12	1.00 ± 0.05497	1.5 ± 0.06	120.3 ± 0.04
BS 1	2.54 ± 0.06	1.07 ± 0.03463	1.67 ± 0.026	118.4 ± 0.0053
BS 2	2.59 ± 0.096	1.52 ± 0.0127	1.07 ± 0.083	94.12 ± 0.0968
BS 3	2.71 ± 0.03	1.67 ± 0.025	1.04 ± 0.005	84.02 ± 0.045

Figure 2:(a) Lactase dehydrogenase, (b) Alkaline phosphatase activity, (c) Histopathology.

Discussion

With the increasing focus on utilizing bacterial secondary metabolites for disease prevention in aquaculture, the industry is expanding rapidly and becoming highly lucrative. This study investigates the immunomodulatory and growth-promoting properties of biosurfactants (BS) derived from *Pseudomonas* sp. in fish. A review of existing literature reveals a significant gap in research on metabolites isolated from *Pseudomonas* sp. in the littoral region of Karnataka being used as fish feed supplements. The pursuit of enhanced growth in farmed food fish within specific culture periods drives farmers and entrepreneurs to explore diverse feed additives. In this study, fish were administered varying doses of the biosurfactant (50,150,300 mg/kg) through feed to evaluate its potential effects. Slightly higher growth variations were observed in the higher dose group compared to the control. Similar findings were reported by Shi et al⁴⁵ and Shao et al⁴³.

The growth rate of tilapia (*Oreochromis niloticus*) was higher when supplied with surfactant concentrations ranging from 12.5 to 100 mg/kg. Shi et al⁴⁴ observed that a combination of 100 mg/kg NT-antimicrobial lipopeptide, including iturins and fengycins along with surfactin, resulted in a higher yield. Currently, the mechanisms underlying surfactin-promoted growth are not clearly understood. Based on earlier reports, it can be hypothesized that the enhanced growth performance of various animals might be associated with the antimicrobial activity and the role of antimicrobial peptides as potent immune regulators^{50,52}. Additionally, this effect may be influenced by unexamined factors related to water quality and host microbiomes, which were beyond the scope of this investigation.

The condition of aquatic organisms in natural communities is directly related to water quality. The productivity level of fish in cultivable water bodies depends on ecological conditions, growth and food availability. A good yield from natural food sources is always based on planktonic production systems and limnetic ecology. Further studies can focus on the mechanisms by which surfactin promotes growth. The present study also revealed distinct results in enzymatic and serum biochemical parameters compared to the control. This can also be considered in relation to growth, as observed in the tilapia study by Zhai et al⁵³. Non-specific immune parameters, crucial for defending against a broad spectrum of pathogens, were analyzed, revealing significant alterations in respiratory burst activity, myeloperoxidase activity and lysozyme activity in treated fish compared to the control group.

Myeloperoxidase, an important enzyme produced by neutrophils during respiratory burst, utilizes hydrogen peroxide generated during this process to produce hypochlorous acid, which has potent microbicidal action^{11,21}. Notably, these enhancements in immune responses persisted for over 10 days following the withdrawal of the biosurfactant, gradually returning to baseline levels

comparable to control fish. This observation aligns with previous studies on commercial antibiotics in sea bream which highlight the immunomodulatory effects of biosurfactants, depending on dosage, administration method, duration of exposure and developmental stage of the fish⁴⁶.

Fish metabolic and physiological health can be evaluated through biochemical markers associated with serum enzymes⁵⁴. Monitoring these parameters enables the detection of pathophysiological changes related to nutrition. This study specifically examined liver enzymes including alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), which are indicators of stress and tissue damage. The findings revealed a modest yet significant increase in these enzyme levels up to 30th of the experiment, followed by a decline during the withdrawal phase. The observed rise in LDH activity in *Catla catla* may be due to the conversion of pyruvate to lactate, resulting in elevated lactic acid levels in the blood.

Tissue injury can lead to altered plasma enzyme activity, as enzymes may leak from damaged cells, resulting in changes in serum enzyme levels. Similar effects have been observed in rat models by Pari and Gnanaoundari³³, as well as in *Pangasianodon hypophthalmus* exposed to high doses of oxytetracycline (OTC)²⁷, as reported by Manna et al²⁷. In our study, no significant adverse effects were observed, indicating no apparent damage to internal organs. During the withdrawal period, a decrease in enzyme levels suggested that the organ function changes were reversible. It is crucial to strictly adhere to administration protocols, as higher doses may lead to irreversible organ changes. These findings highlight the importance of careful management when administering substances that affect serum enzyme activity in fish to maintain physiological health and prevent potential organ damage.

Moreover, we observed significant increases in total blood albumin levels in the BS2 and BS3 therapy groups, along with a slight rise in serum protein concentrations. Notably, a decline in globulin and glucose albumin levels remained significant in the BS2 and BS3 groups even after the withdrawal period.

The investigation looked at how surfactants affect fish behavior by examining liver tissue. The study found no significant changes in either behavior or liver health. This aligns with previous research showing that biosurfactants from different bacteria strains are effective against aquatic pathogens. When *Labeo rohita* fish were given food supplemented with *Bacillus subtilis*, their blood protein, albumin and globulin levels increased³⁰. Similarly, cats fed meals with *Bacillus amyloliquefaciens* for 4 or 8 weeks showed higher serum and mucus protein levels⁴. Another study found that Asian seabass had higher muscle protein levels after receiving a probiotic combination²³. These findings suggest an improved immune response in the fish,

as indicated by increased serum protein, albumin and globulin levels⁵⁰.

The observed increase in total serum protein levels supports the production of defense components in sufficient amounts. Detailed assessments of liver tissue showed no changes indicative of detoxification processes^{6,17,31}. The fish displayed normal swimming behavior throughout the study, with no balance disruption or unusual surfacing behavior. There were no signs of lethargy or excessive mucus secretion. Unclarified but the moment of fish fed with higher concentration, the movement seems to be faster. The observation was stated with difficulty in sampling from these BS2 and BS3 tanks.

Several studies have found that *Bacillus* sp. lipopeptide biosurfactants can help to prevent white spot syndrome virus (WSSV) infections in prawns¹³. Biosurfactants derived from *Pseudomonas* sp. have shown antiparasitic properties against *Ichthyophthirius multifiliis*. These studies indicate that biosurfactants have the potential to enhance fish immunity. Effective doses (10-100 µg/mL) of these biosurfactants showed positive results in rainbow trout fingerlings without causing any adverse effects, confirming their antiparasitic properties²⁰. The immunostimulatory efficacy of phospholipopeptide biosurfactants derived from *Staphylococcus hominis* has been assessed in *Oreochromis mossambicus*.

The study revealed that fish fed diets supplemented with biosurfactants exhibited heightened immune responses and increased disease resistance ($p < 0.05$)³⁵. The findings suggest that biosurfactants isolated from *Pseudomonas* sp. have the potential to enhance aquaculture production by strengthening fish immunity. Additionally, the use of poly-3-hydroxybutyrate (PHB)²⁹, a bacterial synthesis product used as a feed additive in aquaculture, has shown an immunomodulatory role against WSSV infection in shrimp, positively influencing survival rates and highlighting the efficacy of such additives in bolstering immune responses.

The examination of surfactant effects on fish behaviour and liver histology yielded reassuring results, indicating no observable changes in behaviour or liver pathology. These findings contribute to the growing body of evidence supporting the effectiveness and safety of biosurfactants in aquaculture. Additionally, freshwater-reared *Litopenaeus vannamei* exposed to varying concentrations of phospholipids or cholesterol in their diet exhibited alterations in the expression of immune-related genes. It showed enhanced tolerance to *Vibrio alginolyticus* when supplemented with phospholipids⁵².

Laranja et al²² conducted a compelling study demonstrating improved protective effects against pathogenic *Vibrio campbellii* challenges in gnotobiotic *Artemia franciscana* following administration of a superior PHB-accumulating *Bacillus* strain JL47. It is interesting to note the similarities

between research on lipopeptide biosurfactants targeting specific pathogens and the beneficial effects of rhamnolipid as a feed additive. It seems that biosurfactants may serve as a valuable tool in aquaculture to enhance immune responses and potentially increase production. Non-specific immunity plays a crucial role in fish defense modulation, aiding acquired immunity in maintaining a healthy and disease-resistant lifestyle in fish.

The study can be indirectly related to plant-based surfactants tested on fish species. For example, Hedrera et al¹⁸ found that saponin is able to induce an immune response in zebrafish at a 3.3 g/kg inclusion level in feed. It is worth noting that Hedrera's study with the biosurfactants was incorporated directly into water and not into the feed. Therefore, our data yielded information on the response of the whole fish and not necessarily on intestinal-specific effects.

Plant extracts such as saponins are known to enhance non-specific immune responses and are effective against a wide range of pathogens⁴². Saponins have been found to stimulate the release of cytokines and interferon in shrimps. They are also known to improve the antiseptic and antimicrobial properties of hemolymph.

López et al²⁵ previously reported that saponins in the diet of Zebra fish act as an excellent immune booster. In an experiment conducted by Vasudava and Rina⁴⁸ on catla using seeds of *Achyranthes aspera*, the chemical constituents were found to be triterpenoid saponins containing oleanoic acid as the aglycone. The total serum protein level was higher on days 14 and 21 and lower on day 28 compared to the control, but none of these differences was significant. No significant differences were observed between the test and control groups, except for the globulin levels on day 21, where the test group was significantly higher than the control.

The inhibition of trypsin due to total protease inhibitors in serum peaked on day 21 and then decreased on day 28. Feeding *C. catla* with *A. aspera* incorporated diet enhanced specific and non-specific immune system factors, increasing the level of natural anti-proteases in the serum. This may provide defense against invading bacterial pathogens⁴⁸. The results from the current trial indicate that dietary surfactin, when administered below a certain threshold, has the potential to enhance growth and influence enzyme and biochemical parameters.

However, the excessive supplementation of surfactin does not seem to offer any additional benefits. These findings align with previous research^{24,41,43,53} and attribute the behaviour of surfactin to its surface activity. It is suggested that all the biological effects of surfactin stem from its surface activity. Its interaction with the cell membrane is significantly influenced by the concentration of surfactin. This underscores the necessity of a threshold concentration of surfactin in the bilayer for its solubilization^{10,40}.

Conclusion

This study provides critical insights into the potential utilization of biosurfactants as immunomodulatory agents within aquaculture systems. The subtle variations observed across multiple parameters highlight the imperative for continued research focused on optimizing dosages, refining administration protocols and investigating additional factors that may influence outcomes. As the aquaculture industry progresses, findings from such studies are pivotal for promoting sustainable and health-centric aquaculture practices. This emphasizes the necessity for further exploration and rigorous investigation in this domain.

Acknowledgment

The authors wish to express sincere thanks to Dr. Manojranjan Nayak, President of S'O'A (Deemed to be University) Bhubaneswar, for providing the necessary facilities to carry out the investigation.

References

1. AbdelMawgoud A.M., Lepine F. and Deziel E., Rhamnolipids: diversity of structures, microbial origins and roles, *Appl. Microbiol. Biotechnol.*, **86**(5), 1323-1336 (2010)
2. Anderson D.P. and Siwicki A.K., Duration of protection against *Aeromonas salmonicida* in brook trout immune-stimulated with glucan or chitosan by injection or immersion, *The Progressive Fish-Culturist*, **56**, 258-261 (1994)
3. Anestopoulos I., Kioussi D.E., Klavaris A., Maijo M., Serpico A., Suarez A., Sanchez G., Salek K., Chasapi S.A. and Zompra A.A., Marine-derived surface-active agents: Health-promoting properties and blue biotechnology-based applications, *Biomolecules*, **10**, 885 (2020)
4. Anushree D., Khreizhato N., Supratim C. and Dibyendu K., A Effects of potential probiotic *Bacillus amyloliquifaciens* FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (*Catla catla*), *Fish & Shellfish Immunology*, **35**, 1547-1553 (2013)
5. APHA, Standard Methods for the Examination of Water and Waste Water, 22nd Edition, American Public Health Association, American Water Works Association, Water Environment Federation (2012)
6. Arellano J.M. et al, Histological changes and copper accumulation 419 in liver and gills of the *Senegales sole*, *Solea senegalensis*, *Ecotoxicol. Environ. Saf.*, **44**(420), 62-72 (1999)
7. Ashish K.M. and Banalata M., Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, *Channa punctatus* (Bloch), *Environmental Toxicology and Pharmacology*, **26**(2), 136-141 (2008)
8. Banat I.M., Makkar R.S. and Cameotra S.S., Potential commercial applications of microbial surfactants, *Appl. Microbiol. Biotechnol.*, **53**(5), 495-508 (2000)
9. Bradford M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding, *Anal. Biochem.*, **72**, 248-254 (1976)
10. Chen W.C., Juang R.S. and Wei Y.H., Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms, *Biochem Eng J.*, **103**, 158-169 (2015)
11. Dalmo R.A., Ingebrightsen K. and Bogwald J., Non-specific defense mechanisms in fish, with particular reference to the reticuloendothelial system (RES), *J. Fish Dis.*, **20**(4), 241-273 (2003)
12. Deshpande M. and Daniels L., Evaluation of sophorolipid biosurfactant production by *candida bombicola* using animal fat, *Bioresour. Technol.*, **54**(2), 143-150 (1995)
13. Donio M.B.S., Ronica, S.F.A., Thanga V.V., Velmurugan S., Adlin J.J., Michaelbabu M. and Citarasu T., Isolation and characterization of halophilic *Bacillus sp.* BS3 able to produce pharmacologically important biosurfactants, *Asian Pac. J. Trop. Med.*, **6**(11), 876-883 (2013)
14. Doumas B.T., Biggs H.G., Arends R.L. and Pinto P.V., Determination of serum albumin, In Cooper G.R., ed., Standard Methods of Clinical Chemistry, 7, 175-188 (1972)
15. FAO, Cultured Aquatic Species Information Programme *Catla catla* (Hamilton, 1822), http://www.fao.org/fishery/cultured_species/Catla_catla/en (2017)
16. FAO, Aquaculture Production, Yearbook of Foods and Agriculture Organization of United Nations, Rome, Italy, 1510-1511 (2003)
17. Figueiredo-Fernandes A., Ferreira-Cardoso J.V., Garcia-Santos S., Monteiro S.M., Carrola J., Matos P. and Fontainhas F.A., Histopathological changes in liver and gill epithelium of Nile tilapia, *Oreochromis niloticus*, exposed to waterborne copper, *Pesq. Vet. Bras.*, **27**(3), 103-109 (2007)
18. Hedrera M.I., Galdames J.A., Jimenez-Reyes M.F., Reyes A.E., Avendano H.R. and Romero J., Soybean meal induces intestinal inflammation in zebrafish larvae, *PLoS One*, **8**(6), 9983 (2013)
19. Hume M.E., Historic perspective: prebiotics, probiotics and other alternatives to antibiotics, *Poult Sci.*, **90**(11), 2663-2669 (2011)
20. Jubury A., Lu C., Kania P.W., von Gersdor J.L., Liu Y., de Brujin I., Raaijmakers J. and Buchmann K., Impact of *Pseudomonas* H6 surfactant on all external life cycle stages of the fish parasitic ciliate *Ichthyophthirius multifiliis*, *J. Fish Dis.*, **41**(1), 1147-1152 (2018)
21. Klebanoff S.J., Myeloperoxidase: friend and foe, *J. Leukoc. Biol.*, **77**(55), 598-625 (2005)
22. Laranja J.L.Q., De Schryver P., Ludevese-Pascual G.L., Amar E.C., Aerts M., Vandamme P. and Bossier P., High amorphous poly-beta-hydroxybutyrate (PHB) content in a probiotic *Bacillus* strain displays better protective effects in Vibrio-challenged gnotobiotic Artemia, *Aquaculture*, **487**, 15-21 (2018)
23. Lee S., Katya K., Park Y., Won S., Seong M., Hamidoghli and Bai S.C., Comparative evaluation of dietary

probiotics *Bacillus subtilis* WB60 and *Lactobacillus plantarum* KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, *Anguilla japonica*, *Fish. Shellfish. Immunol.*, **61**, 201-210 (2017)

24. Li J., The application of surfactin in GIFT tilapia feed, China, Jimei University (2015)

25. López N.A., Peggs D., Wiegertjes G.F. and Brugman S., Exposure to antibiotics affects saponin immersion-induced immune stimulation and shift in microbial composition in zebrafish larvae, *Front Microbiol*, **9**, 1-16 (2018)

26. Magnadottir B., Innate immunity of fish (overview), *Fish Shellfish Immunol*, **20**(2), 137-151 (2006)

27. Manna S.K., Bera A.K., Das N., Bandopadhyay C., Baitha R., Ghadei S.S., Sen S., Das B.K., Kumar A., Ravindran R., Krishna N. and Patil P.K., Determination of biosafety of the antibiotic-oxytetracycline hydrochloride in *Pangasianodon hypophthalmus*, *Aquaculture Research*, **52**(1), 1-11 (2021)

28. Michell R.H., Karnovsky M.J. and Karnovsky M.L., The distributions of some granule-associated enzymes in guinea-pig polymorphonuclear leucocytes, *Biochemical Journal*, **116**(2), 207-216 (1970)

29. Monica M. et al, The efficacy of Poly-Hydroxy Butyrate (PHB)/biosurfactant derived from *Staphylococcus hominis* against White Spot Syndrome Virus (WSSV) in *Penaeus monodon*, *Fish Shellfish Immunol*, **71**, 399-410 (2017)

30. Nayak S.K., Swain P. and Mukherjee S.C., Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp, *Labeo rohita* (Ham.), *Fish. Shellfish Immunol*, **23**, 892-896 (2007)

31. Olojo E.A., Olurin K.B., Mbaka G. and Oluwemim A.D., Histopathology of the gills and 562 liver tissues of the African catfish (*Clarias gariepinus*) exposed to lead, *Afr. J. Biochem.*, **4**(11), 117-122 (2005)

32. Park Y., Moniruzzaman M., Lee S., Hong J., Won S., Lee J.M., Yun H., Kim K.W., Ko D. and Bai S.C., Comparison of the effects of dietary single and multi-probiotics on growth, non-specific immune responses and disease resistance in starry flounder, *Platichthys stellatus*, *Fish Shellfish Immunol*, **59**, 351-357 (2016)

33. Pari L. and Gnanasoundari M., Influence of naringenin on oxytetracycline mediated oxidative damage in rat liver, *Basic & Clinical Pharmacology & Toxicology*, **98**(5), 456-461 (2006)

34. Quade M.J. and Roth J.A., A rapid, direct assay to measure degranulation of bovine neutrophil primary granules, *Veterinary Immunology and Immunopathology*, **58**(3), 239-248 (1997)

35. Rajeswari V., Kalaivani P.S., Saranya V., Suguna P. and Shenbagarathai R., Immunostimulation by phospholipopeptide biosurfactant from *Staphylococcus hominis* in *Oreochromis mossambicus*, *Fish Shellfish Immunol*, **48**, 244-253 (2016)

36. Rincón-Fontán M., Rodríguez-López L., Vecino X., Cruz J.M. and Moldes A.B., Potential application of a multifunctional biosurfactant extract obtained from corn as stabilizing agent of vitamin C in cosmetic formulations, *Sustain. Chem. Pharm.*, **16**, 1-7 (2020)

37. Rodrigues L., Banat I.M., Teixeira J. and Oliveira R., Biosurfactants: potential applications in medicine, *J. Antimicrob. Chemother.*, **57**, 609-618 (2006)

38. Sankaran K. and Gurnani S., On the variation in the catalytic activity of lysozyme in fishes, *Indian J. Biochem. Biophys.*, **9**(2), 162-165 (1972)

39. Santa Anna L.M., Sebastian G.V., Pereira Jr., Alves T.L.M., Menezes E.P. and Freire D.M.G., Production of biosurfactant from a new and promising strain of *Pseudomonas aeruginosa* PA1, *Appl. Biochem. Biotechnol*, **91**(93), 459-467 (2001)

40. Seydlova G. and Svobodova J., Review of surfactin chemical properties and the potential biomedical applications, *Cent Eur J Med*, **3**, 123-133 (2008)

41. Sahnoun R., Mnif I., Fetoui H., Gdoura R., Chaabouni K., Makni-Ayadi F., Kallel C., Ellouze-Chaabouni S. and Ghribi D., Evaluation of *Bacillus subtilis* SPB1 lipopeptide biosurfactant toxicity towards mice, *Int J Pept Res Ther*, **20**, 333-340 (2014)

42. Sarikahya N.B., Nalbantsoy A. and Top H., Immunomodulatory, hemolytic and cytotoxic activity potentials of triterpenoid saponins from eight *Cephalaria* species, *Phytomedicine*, **38**, 135-144 (2018)

43. Shao-Wei Z., Qing-Chao S. and Xue-Hao C., Effects of dietary surfactin supplementation on growth performance, intestinal digestive enzymes activities and some serum biochemical parameters of tilapia (*Oreochromis niloticus*) fingerlings, *Italian Journal of Animal Science*, **15**(2), 318-324 (2016)

44. Shi G., Sun L.J., Wang Y.L., Liu H.M., Xu D.F., Nie F.H., Liu Y. and Ye R.Y., Effects of NT-6 antimicrobial lipopeptide on growth performance of *Litopenaeus vannamei* and *Vibrio* number during breeding process, *Guangdong J Agric Sci*, **12**, 119-137 (2014b)

45. Shi Q.C., Lu J.J., Lu P., Guo Q.X. and Zhai S.W., Effects of antimicrobial lipopeptides supplementation on growth performance and intestinal digestive enzyme activities of genetic improvement of farmed tilapia (GIFT, *Oreochromis niloticus*), *J Feed Ind*, **35**(12), 6-10 (2014a)

46. Serezli R., Çağırhan H., Okumuş İ., Akhan S. and Balta F., The effect of oxytetracycline on non-specific immune response in sea bream (*Sparus aurata* L. 1758), *Turkish Journal of Veterinary and Animal Sciences*, **29**, 31-35 (2005)

47. Tiffany T.O., Jansen J.M., Burtis C.A., Overton J.B. and Scott C.D., Enzymatic kinetic rate and end-point analyses of substrate, by use of a GeMSAEC fast analyser, *Clin. Chem.*, **18**(8), 829-840 (1972)

48. Vasudeva R.Y. and Rina C., Stimulation of immunity in Indian major carp *Catla catla* with herbal feed ingredients, *Fish & Shellfish Immunology*, **18**, 327-334 (2005)

49. Wang S., Thacker P.A., Watford M. and Qiao S., Functions of antimicrobial peptides in gut homeostasis, *Curr Protein Pept Sci*, **16**, 582-591 (2015)

50. Wiegertjes G.F., Stet R.J.M., Parmentier H.K. and Van Muiswinkel W.B., Immunogenetics of disease resistance in fish: a comparable approach, *Dev Comp Immunol*, **20**, 365-381 (1996)

51. Xiao H., Shao F.Y., Wu M.M., Ren W.K., Xiong X., Tan B. and Yin Y.L., The application of antimicrobial peptides as growth and health promoters for swine, *J Anim Sci Biotechnol*, **6**(19), 1-6 (2015)

52. Yan M., Wang W., Huang X., Wang X. and Wang Y., Interactive effects of dietary cholesterol and phospholipids on the growth performance, expression of immune-related genes and resistance against *Vibrio alginolyticus* in white shrimp (*Litopenaeus vannamei*), *Fish Shellfish Immunol*, **97**, 100-107 (2020)

53. Zhai S.W., Li J. and Sun X.W., Effects of surfactin supplementation on growth performance, serum biochemical indexes and lipid metabolism of genetically improved farmed tilapia (*Oreochromis niloticus*), *Chinese J Anim Nutr*, **27**, 3959-3567 (2015)

54. Zhai S.W. and Liu S.L., Effects of dietary quercetin on the growth performance, digestive enzymes and antioxidant potential in the hepatopancreas of tilapia (*Oreochromis niloticus*), *Isr J Aquacult-Bamid*, **6**, 1-7 (2014).

(Received 28th September 2024, accepted 05th December 2024)